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Chapter 1

Models of sex ratio evolution
Jon Seger & J. William Stubblefield

1.1 Summary

Our understanding of sex ratio evolution de-
pends strongly on models that identify: (1) con-
straints on the production of male and female
offspring, and (2) fitness consequences entailed
by the production of different attainable brood
sex ratios. Verbal and mathematical arguments
by, among others, Darwin, Düsing, Fisher, and
Shaw and Mohler established the fundamental
principle that members of the minority sex tend
to have higher fitness than members of the ma-
jority sex. They also outlined how various eco-
logical, demographic and genetic variables might
affect the details of sex-allocation strategies by
modifying both the constraints and the fitness
functions. Modern sex-allocation research is de-
voted largely to the exploration of such effects,
which connect sex ratios to many other aspects
of the biologies of many species. The models
used in this work are of two general kinds: (1)
expected-future-fitness or tracer-gene models that
ask how a given sex allocation will affect the
future frequencies of neutral genes carried by
the allocating parent, and (2) explicit population-
genetic models that consider the dynamics of
alleles that determine alternative parental sex al-
location phenotypes. Each kind of model has dif-
ferent strengths and weaknesses, and both are
often essential to the full elucidation of a given
problem.

1.2 Introduction

Males and females are produced in approxi-
mately equal numbers in most species with sepa-
rate sexes, regardless of the mechanism of sex de-
termination, and in most hermaphroditic species
individuals expend approximately equal effort on
male and female reproductive functions. Why
should this be so? Sex allocation is a frequency-
dependent evolutionary game (Charnov 1982,
Maynard Smith 1982, Bulmer 1994). The basic
principle that explains why balanced sex ratios
evolve so often was described in a limited and
tentative way by Darwin (1871), further devel-
oped by Karl Düsing (1883, 1884) and several
early twentieth century authors, and then sum-
marized concisely by RA Fisher in The Genetical
Theory of Natural Selection (1930) (Edwards 1998,
2000). Subsequent work has generalized the prin-
ciple and extended it to cover a great variety of
special circumstances to which Fisher’s elegant
but elementary account does not apply.

Sex allocation is now remarkably well under-
stood, and this understanding is often hailed as
a triumph of evolutionary theory. However, to
say that the fundamentals may be well under-
stood is not to say that all of the interesting and
important discoveries have been made. Despite
its focus on a seemingly simple and singular phe-
nomenon, sex-allocation research has become a
rich and diverse enterprise that makes contact
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with many aspects of biology in a wide range of
taxa. The field has continued to yield surprising
phenomena and novel insights, and the pace
of discovery shows no signs of slowing. The
book you are now holding illustrates the field’s
amazing richness and describes many of the
current research frontiers. But because the field
is so large, not even a multi-authored volume
can cover it all. Reviews of varying emphasis
and scope have been provided by Williams
(1979), Charnov (1982, 1993), Trivers (1985),
Clutton-Brock (1986, 1991), Clutton-Brock and
Iason (1986), Karlin and Lessard (1986), Nonacs
(1986), Bull and Charnov (1988), Frank (1990,
1998), Wrensch and Ebbert (1993), Bulmer (1994),
Godfray (1994), Bourke and Franks (1995), Crozier
and Pamilo (1996), Herre et al. (1997), Klinkhamer
et al. (1997), Hewison and Gaillard (1999) and
West et al. (2000), among many other authors.

In this chapter we introduce the central prin-
ciple of sex ratio evolution and some of the tech-
niques used to model it. We emphasize basic con-
cepts and issues that appear (at least implicitly)
in all models, and we attempt to place these ideas
in their historical context.

1.3 Models have always been
central

Mathematical models are, and always have been,
central to the study of sex ratios. Indeed, it
is hard to think of any biological field, associ-
ated with specific phenotypes, that is more thor-
oughly model-driven. Population genetics is also
model-driven in this sense, of course, but its mod-
els concern genes in general; the genes of popula-
tion genetics are abstracted, intentionally, from
any particular class of phenotypic effects.

The sex ratio, by contrast, could hardly be
more concrete. This is sometimes forgotten, be-
cause every sexual species has a sex ratio (or at
least allocation to male and female functions).
But in fact the phenotype at issue (the relative
numbers of two reproductive morphs) is in many
ways an extremely particular and mundane fact

of life. Even so, biologists from Darwin to the
present have sensed an underlying generality of
principle. They have spoken of ‘the’ sex ratio
(singular), as if to understand the sex ratio of any
one species would be (obviously) to understand
the sex ratios of many others. Today we have good
reasons to view ‘the’ sex ratio in this way, but
most of these were unknown to Darwin. Nonethe-
less, he initiated the modern discussion of sex ra-
tios, in The Descent of Man and Selection in Relation
to Sex (1871), by describing the outlines of a quan-
titative, dynamical model that includes most of
the essential features of everything that would
follow. Formal mathematical analysis came later,
as did direct connections to genetics, and these
developments gave rise to a richness that Darwin
could not have anticipated. Even so, he saw that
there must be a simple underlying principle to
be elucidated and then (by implication) applied
to a broad diversity of special cases. We still see
the subject in this way.

The principle emerges from an analysis of the
reproductive consequences of an elementary but
generic model of reproduction. The principle is
then applied and extended by specifying details
that may be left vague in the generic model,
which is to say by modifying various implicit and
explicit assumptions of the model.

Sex ratio modelling has been an extremely
successful enterprise. This success can be at-
tributed to three features of the relationship
between the models and reality. First, the rele-
vant biological factors can be specified and repre-
sented appropriately in simple mathematical ex-
pressions. Second, these factors can be observed
and measured in nature, and many of them vary
both within and among species in ways that are
predicted to change the sex ratios produced by
different individuals or species. Third, the fit-
ness differences arising from sex ratio behaviours
are often large, so real organisms are expected
to show sex ratio modifications at least qualita-
tively like those predicted by theory, and in fact
they often do. In this chapter we focus mainly
on the first of these three features of sex ratio
research: how biology is represented in models,
and how the models are then analysed to uncover
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predictions that might (at least in principle) be
tested in nature. Other chapters more thoroughly
explore the variations that have been incorpo-
rated into sex ratio models, and the ways in
which experimental and observational data have
been used to test these models.

1.4 Darwin’s argument

As its title implies, The Descent of Man and Selection
in Relation to Sex (1871) is really two books merged
into one. The book on human origins begins with
Chapter I, ‘The Evidence of the Descent of Man
from some Lower Form’, and the book on sexual
selection begins with Chapter VIII, ‘Principles of
Sexual Selection’. Darwin opens the chapter by
explaining that sexual selection is ‘that kind of
selection’ that ‘depends on the advantage which
certain individuals have over other individuals of
the same sex and species, in exclusive relation
to reproduction’ (page 256). Sexual selection is
about relative advantage in the competition for
mates, not about survival or absolute competence
to reproduce.

When the two sexes follow exactly the same
habits of life, and the male has more highly
developed sense or locomotive organs than the
female, it may be that these in their perfected
state are indispensable to the male for finding
the female; but in the vast majority of cases, they
serve only to give one male an advantage over
another, for the less well-endowed males, if time
were allowed them, would succeed in pairing
with the females; and they would in all other
respects, judging from the structure of the
female, be equally well adapted for their
ordinary habits of life.

(page 257)

Darwin then describes several kinds of sex differ-
ences that seem to make sense on this principle;
for example, the generally earlier emergence of
male insects. He notes that the intensity of the
competition for mates will be a function of the
sex ratio and then opens a section titled ‘Numer-
ical Proportion of the Two Sexes’ (page 263).

I have remarked that sexual selection would be a
simple affair if the males considerably exceeded

in number the females. Hence I was led to
investigate, as far as I could, the proportions
between the two sexes of as many animals as
possible; but the materials are scanty. I will here
give only a brief abstract of the results, retaining
the details for a supplementary discussion, so as
not to interfere with the course of my argument.
Domesticated animals alone afford the
opportunity of ascertaining the proportional
numbers at birth; but no records have been
specially kept for this purpose. By indirect
means, however, I have collected a considerable
body of statistical data, from which it appears
that with most of our domestic animals the sexes
are nearly equal at birth.

Darwin’s numbers show rough equality or mod-
est male excesses at birth for various domes-
tic species and for humans. He then points out
that ‘we are concerned with the proportion of
the sexes, not at birth, but at maturity,’ because
that is when the competition for mates will oc-
cur. His data here are less definite, but they
suggest greater male mortality and thus a rel-
ative deficit of males at maturity. However, ‘The
practice of polygamy leads to the same results
as . . . an actual inequality . . . for if each male se-
cures two or more females, many males will
not be able to pair; and the latter assuredly
will be the weaker or less attractive individuals.’
Pages 266–279 then review patterns of polygamy
and sexual dimorphism, and pages 279–300 dis-
cuss the ‘laws of inheritance’ of secondary sexual
characters.

The chapter then returns to the problem of
the sex ratio. Pages 300–315 present a detailed
‘Supplement on the proportional numbers of the
two sexes in animals belonging to various classes’
(humans, horses, sheep, birds, fish and insects). A
final short section ‘On the Power of Natural Se-
lection to regulate the proportional Numbers of
the Sexes, and General Fertility’ (pages 315–320)
lays out the evolutionary argument. Its second
paragraph (page 316) begins as follows:

Let us now take the case of a species producing
. . . an excess of one sex–we will say of males–
these being superfluous and useless, or nearly
useless. Could the sexes be equalized through
natural selection? We may feel sure, from all
characters being variable, that certain pairs
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would produce a somewhat less excess of males
over females than other pairs. The former,
supposing the actual number of the offspring to
remain constant, would necessarily produce more
females, and would therefore be more productive.
On the doctrine of chances a greater number of
the offspring of the more productive pairs would
survive; and these would inherit a tendency to
procreate fewer males and more females. Thus a
tendency towards the equalization of the sexes
would be brought about. . . . The same train of
reasoning is applicable . . . if we assume that
females instead of males are produced in excess,
for such females from not uniting with males
would be superfluous and useless.

Parents that produce an excess of the minority
sex will be ‘more productive’ because fewer of
their offspring will be ‘superfluous’. The para-
graph says more of these offspring will ‘sur-
vive’, but this is illogical. Perhaps Darwin meant
‘reproduce’, or perhaps he was confused about
the cause of the differential productivity. The
paragraph asserts that parents of the minority
sex will enjoy a productivity advantage, no mat-
ter which sex is ‘produced in excess’, and it indi-
cates that the sex in excess will suffer increased
failure to mate (‘not uniting’). But does the para-
graph show how these effects modulate parental
fitness? It certainly contains all the elements and
reaches the right conclusion, but it does not
clearly explain why, or in what sense, parents of
the minority sex are ‘more productive’. In retro-
spect it comes extremely close (see Sober 1984,
Bulmer 1994, Edwards 1998), but it does not ex-
plain what will happen in the generation of the
parents’ grandprogeny.

The next paragraph (pp. 317–318) presents
both an advance and a retreat. The advance is
an overt anticipation of the concept of parental
expenditure or investment (as ‘force’). In the pre-
vious paragraph, Darwin had explicitly noted the
trade-off between numbers of male and numbers
of female offspring; in this paragraph he explic-
itly notes the trade-off between offspring num-
ber and offspring quality. Parents that produce
fewer ‘superfluous males’ but ‘an equal num-
ber of productive females’ would probably ben-
efit, as a consequence, from ‘larger and finer’ ova
or embryos, and ‘their young [would be] better

nurtured in the womb and afterwards.’ In sup-
port of this idea, Darwin notes that inverse re-
lationships between seed number and seed size
can be seen both among and within species of
plants. ‘Hence the offspring of the parents which
had wasted least force in producing superfluous
males would be the most likely to survive, and
would inherit the same tendency not to produce
superfluous males, whilst retaining their full fer-
tility in the production of females. So it would
be with the converse case of [an excess of ] the
female sex.’

The retreat is a muddled explanation of the
disadvantages experienced by ‘superfluous’ off-
spring. For purposes of argument, Darwin had be-
gun the paragraph assuming that there was an
excess of males, and that some parents produced
fewer of them but a typical number of females.
‘When the offspring from the more and the less
male-productive parents were all mingled to-
gether, none would have any direct advantage
over the others.’ This is not true in the sense that
he seems to intend. The offspring might be equi-
valent individually (leaving aside the ‘indirect’
benefits noted above), but not collectively; par-
ents that produced more males would have more
descendants through males than those that pro-
duced fewer males, given that the offspring ‘were
all mingled together’. In this sense sons are
not ‘superfluous’ even when produced in excess.
Darwin seems to be imagining that parents that
contribute to the male excess will have no more
grandoffspring through their sons (collectively)
than those parents that refrain from producing
excess males.

In the second edition of the Descent (1874),
most of Chapter VIII is similar to that of the first
edition, but the final section is completely differ-
ent. It is renamed ‘The proportion of the sexes
in relation to natural selection’, and it consists
mainly of an inconclusive discussion of the rela-
tionship between sex-biased infanticide and the
primary sex ratio. It concludes:

In no case, as far as we can see, would an
inherited tendency to produce both sexes in
equal numbers or to produce one sex in excess,
be a direct advantage or disadvantage to certain
individuals more than to others; for instance, an
individual with a tendency to produce more
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males than females would not succeed better in
the battle for life than an individual with an
opposite tendency; and therefore a tendency of
this kind could not be gained through natural
selection. . . . I formerly thought that when a
tendency to produce the two sexes in equal
numbers was advantageous to the species, it
would follow from natural selection, but I now
see that the whole problem is so intricate that it
is safer to leave its solution for the future.

Why did Darwin abandon his own previous argu-
ment which was close to the ‘solution’ and clearly
moving in the right direction? On one reading
of the 1874 retraction, he considers the 1871 ar-
gument to be flawed by a reliance on species-
benefit reasoning. Consistent with such an in-
terpretation, the paragraph laying out the evo-
lutionary argument (1871, p 316) includes an ex-
traneous and confused aside on the adjustment
of fertility, which we deleted from our earlier
quotation.

. . . But our supposed species would by this process
be rendered, as just remarked, more productive;
and this would in many cases be far from an
advantage; for whenever the limit to the numbers
which exist, depends, not on destruction by
enemies, but on the amount of food, increased fer-
tility will lead to severer competition and to most
of the survivors being badly fed. In this case, if the
sexes were equalized by an increase in the number
of the females, a simultaneous decrease in the
total number of the offspring would be beneficial,
or even necessary, for the existence of the species;
and this, I believe, could be effected through
natural selection in the manner hereafter to be
described.

Why Darwin should invoke, here, the concept
of species’ benefit (or need!) seems baffling. Two
pages later, as promised, he describes in two
paragraphs how reduced fertility (offspring num-
ber) could evolve by ordinary natural selection,
given trade-offs between maintenance and repro-
duction, and between offspring number and
quality. These two paragraphs end the chapter
and brilliantly anticipate late-twentieth-century
developments in life-history theory. They contain
no species-benefit reasoning that we can detect.
Darwin credits Herbert Spencer’s Principles of Biol-
ogy (1867) for inspiration on this subject.

It seems odd that Darwin should have lost
his nerve and failed to correct confusions that
were probably no worse than hundreds that
he must have surmounted in other contexts.
His decision to remove the entire argument
from the second edition of the Descent (1874)
can be taken to support the view that he never
really understood the principle as well as a
generous reading might suggest he did at the
time he wrote it. He sees a close connection
between sexual selection and the sex ratio: as the
number of males competing for each productive
mating increases, their average reproductive
success must decrease. But he does not seem to
recognize that he should directly compare the
average fitnesses of males and females, and that
he should evaluate the fitnesses of parents by
counting their grandprogeny. In any case, his
decision to remove the evolutionary argument
from the second edition undoubtedly changed
the history of behavioural ecology. The second
edition was reprinted far more extensively than
the first and became the edition read by almost
everyone, including RA Fisher (Edwards 1998).

The recognition that sex ratios evolve through
negatively frequency-dependent selection on the
relative reproductive success of male and female
offspring is traditionally attributed to Fisher
(1930). His two-page verbal argument is informed
by a knowledge of genes and it is far more lu-
cid than Darwin’s, but otherwise it is very sim-
ilar in spirit. Why does Fisher not credit Dar-
win? One explanation is that, like most of his
contemporaries, Fisher had read the second edi-
tion of the Descent and understandably failed to
see any reason to persue Darwin’s hint about
what he ‘formerly thought’. Edwards (1998) has
shown that Darwin’s initial lead was picked
up by Düsing and several early twentieth cen-
tury authors who further clarified the argument,
and that Fisher was almost certainly aware of
at least some of these later works. Why does
Fisher not cite them either? Edwards suggests
that Fisher understood his own account of the
principle to be derived from these sources, that
he assumed his interested contemporaries also
would have been aware of them, and that stan-
dards of scholarly attribution were not as strict
in 1930 as they are today. These factors could
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explain why Fisher (1930) presents the principle
so casually.

1.5 The elements of a sex ratio
model

A fully specified model of evolutionary adapta-
tion can be viewed as a proposal showing how
certain biological circumstances will give rise
to a fitness function and a set of constraints. These
relations are typically referred to as the assump-
tions, because the modeller is free, in principle,
to change them in arbitrary ways. Models based
on relatively ‘realistic’ assumptions are often
considered more scientifically ‘interesting’ than
those based on unrealistic assumptions, but, as
Fisher himself points out in the preface to The
Genetical Theory of Natural Selection (1930), models
cannot really illuminate the natural world
without also illuminating unnatural worlds. ‘No
practical biologist interested in sexual repro-
duction would be led to work out the detailed
consequences experienced by organisms having
three or more sexes; yet what else should he do
if he wishes to understand why the sexes are,
in fact, always two?’ A model becomes explicitly
mathematical when it embodies its assumptions
(‘three sexes’, for example) in a set of formal
quantitative relations that can be evaluated to
reveal expected evolutionary outcomes. These
deductions, following from the assumptions, can
be interpreted as predictions about what would
be expected to happen if the world actually
worked as the assumptions propose it does. Such
a derivation of expected consequences of the
assumptions is often referred to as an analysis of
the model.

There are two distinctive but complemen-
tary approaches to setting up and analysing
explicit sex ratio models. The older, more in-
tuitive and more expressive approach employs
‘expected-future-fitness’ calculations similar in
spirit to those used in many inclusive-fitness and
quantitative-genetic models. In this approach,
sex-allocation strategies are evaluated with re-
spect to the expected future frequencies of se-
lectively neutral genes (tracers of descent) car-

ried by an individual parent that exhibits a given
sex ratio phenotype. The younger, more rigorous
but less transparent approach employs dynami-
cal population-genetic models to ask under what
circumstances an allele that determines a spe-
cific parental sex ratio phenotype can invade (or
fix) against an allele that determines a different
phenotype. Both kinds of models can vary widely
in sophistication and complexity. Neither is in-
herently ‘better’; the choice of approach is largely
a matter of taste and the nature of the problem
being considered (see Bulmer 1994). We will illus-
trate both approaches.

Even in its original verbal form, the Darwin–
Fisher argument is a legitimate (if primitive) sex
ratio model. It is only marginally mathematical,
but that does not disqualify it as a model. The
relevant assumptions are clearly identified,
most importantly: (1) that sex-specific fitness
differences arise from an inevitable ‘competi-
tion’ for mates, which implies a fitness function,
and (2) that parents that produce more sons
(or daughters) must necessarily produce fewer
daughters (or sons), which implies a constraint.
The implicitly quantitative analysis proceeds as
follows. Parents that overproduce the minority
sex will have offspring that enjoy greater than
average reproductive success, on average. There-
fore, any heritable variants that tend to cause
overproduction of the minority sex will increase
in frequency, and as they do so the sex ratio
imbalance will decrease. Because this is true no
matter which sex is currently under-represented,
there must be a stable evolutionary equilibrium
at which male and female offspring are produced
in approximately equal numbers. If all parents
were to produce equal numbers of females and
males, then no other sex ratio phenotype could
increase under selection. Today we would call
this unbeatable phenotype an ‘evolutionarily sta-
ble strategy’ or ESS (Maynard Smith & Price 1973).

1.6 Düsing’s model

The first general mathematical treatment of
sex ratio evolution has long been attributed to
Shaw and Mohler (1953), who derived an elegant
formalization of Fisher’s argument. However,
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Edwards (1998), in reconstructing Fisher’s sour-
ces, discovered that a similar mathematical treat-
ment had been published almost 70 years earlier
by Karl Düsing. His Ph.D. dissertation (Düsing
1883, expanded to book length in 1884) is mainly
a study of factors associated with variation in
progeny sex ratios in ‘man, animals and plants’
(e.g. maternal age and parity). In the early pages
of this work, Düsing poses and answers a ques-
tion that leads him to construct what is undoubt-
edly the first formal sex ratio model and perhaps
the first mathematical model in evolutionary
biology.

Given that animals vary their sex ratios in re-
sponse to particular conditions of life, why do
we not see large overall sex ratio imbalances? The
reason, Düsing says, is that deviations from a bal-
anced sex ratio will tend to be self-correcting: an
excess of one sex provides a reason to produce
more of the other. To make the argument con-
crete, he assumes a population in which there is
a lack of females, and points out that all the males
together have the same number of offspring as all the
females. Because the latter are (by assumption) in
the minority, each will have on average more off-
spring. For example, if there are x females and
nx males, and if they produce z offspring in all,
then each female will produce z/x offspring and
each male will produce z/nx (Düsing 1884 p. 10,
see Edwards 2000 for a full translation of the
argument). He points out that if a female pro-
duced more female offspring, these daughters
would produce, collectively, a larger than aver-
age number of offspring. Suppose a female pro-
duces A sons and a daughters, and another pro-
duces the converse (A daughters and a sons). The
first will have

A
z

nx
+ a

z

x
(1.1)

grandchildren and the second will have

a
z

nx
+ A

z

x
. (1.2)

If we assume that A > a, such that A = ba (with
b > 1), then the first female will contribute

az

x

[
b

n
+ 1

]
(1.3)

individuals to the second generation, while the
second female will contribute

az

x

[
1

n
+ b

]
(1.4)

which is

1 + bn

b + n
(1.5)

times as many. Düsing notes that if the popula-
tion sex ratio is balanced (n = 1), then this ex-
pression evaluates to 1 for any sex ratio. No mat-
ter what progeny sex ratio a female produces, she will
have the same number of descendants in the second
generation. But not so if the sex ratio is unbal-
anced. For example, if there are twice as many
males as females, then the ratio of grandchildren
will be

1 + 2b

b + 2
(1.6)

as a function of the difference in progeny sex
ratios (b). Düsing contrasts the fitnesses of two
females for which b = 3; the one producing a
threefold female excess has 7/5 as many grand-
children as the one producing a threefold male
excess.

In less than two pages, Düsing both clarifies
Darwin’s argument and quantifies it. He identi-
fies the key underlying fact that total male and
female fitnesses must be equal; he identifies rela-
tive numbers of grandchildren as the appropriate
measure of fitness; he writes a general expression
for fitness as a function of the parent’s progeny
sex ratio b given the population sex ratio n; and
he discovers that fitness is unaffected by progeny
sex ratios if and only if the population sex ratio
is balanced (in effect, the ESS argument). Having
given a general theoretical reason why progeny
sex ratio adjustment might be advantageous to
individuals, he then embarks on a massive empir-
ical review of such adjustments and their corre-
lates in many species. Apparently this subject was
as interesting and controversial in Düsing’s time
as it is today; his analyses of the patterns were
much discussed, and his evolutionary model was
forgotten (Edwards 1998, 2000, SH Orzack, pers.
comm.).
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1.7 Fisher’s equal-investment
principle

Fisher’s (1930) explanation of the sex ratio prin-
ciple is as brief as Düsing’s, but purely verbal
and very well known, so we will not dwell on
it here except to note that it presents a very im-
portant generalization of the earlier arguments.
Fisher carefully considers the nature of the con-
straint on male and female offspring production,
and discovers that the sex ratio equilibrium con-
cerns the distribution of parental effort or ‘ex-
penditure’ (later generalized by Trivers 1972 as
‘investment’), not numbers per se. For example,
suppose daughters are twice as costly to produce
as sons. Then a parent with the resources to pro-
duce 12 sons might instead produce six daugh-
ters. What is the evolutionary equilibrium in this
case? At a numerical sex ratio of 1:1 a typical
parent could have four sons and four daughters.
Males and females will have equal average repro-
ductive success, so a rare male-specialist parent
(with 12 sons) would have many more grand-
offspring than an average parent (with eight off-
spring in all), and this advantage would increase
the proportion of male-specialist parents (and
males) in future generations. Only when males
became twice as numerous as females (six sons
and three daughters in a typical brood) would
parents become evolutionarily indifferent to the
sexes of their offspring. Sons would be only half
as successful as daughters, but also only half as
expensive. Thus, over the population as a whole,
we expect to find equal expenditure or invest-
ment in the two sexes, not necessarily equal
numbers.

This generalization leads immediately to
testable predictions. In species where one sex is
more costly (to parents) than the other, that sex
should tend to be produced in correspondingly
smaller numbers. This prediction has held up
well in many recent studies of sexually dimor-
phic social and solitary Hymenoptera. Fisher was
aware that human males suffer higher mortal-
ity rates in childhood than do females, rendering
them less costly per infant born. He argues that
the slight but conspicuous male excess at birth

is plausibly an adjustment to equalize overall in-
vestment in the sexes (at least under patterns of
mortality that would have existed in early human
societies). This example illustrates the logic that
has been used many times since then to connect
sex allocation with other aspects of biology.

1.8 Genetic models I: tracer
genes and the Shaw–Mohler
equation

Shaw and Mohler (1953) set out to formalize
Fisher’s argument and connect it more closely
to genetics. Their model is extremely simple and
transparent, and it forms the basis of most sub-
sequent sex ratio models. The key idea is to
calculate the contribution that a parent in one
generation (P) makes to the gene pool in the sec-
ond descending generation (that of its offspring’s
offspring, G2), if the parent produces a sex ratio
x (proportion males) in the G1 (offspring) gener-
ation where the average sex ratio is X . The fo-
cal parent produces n offspring in all, and the
population at large produces N . In G1 there will
be NX males and ‘all together they will supply
half the genes which are transmitted from G1

to G2’, so each male’s share will be 1/2NX. The
focal parent’s sons therefore contribute nx/2NX
of the genes in G2, and its daughters contribute
n(1 − x)/2N (1 − X ), for a total of

1

2

[
nx

N X
+ n(1 − x)

N (1 − X )

]
. (1.7)

The parent contributes half of the genes carried
by each of its nx sons and n(1 − x) daughters in
G1, so its net genetic contribution to G2 is

C = 1

4

[
nx

N X
+ n(1 − x)

N (1 − X )

]
, (1.8)

or

C = 1

4

(
m

M
+ f

F

)
, (1.9)

‘where m and f are the numbers of male and fe-
male zygotes in the [focal] progeny while M and
F stand for the corresponding numbers in the en-
tire G1’. C is a measure of genetic fitness because
it can be interpreted as the expected frequency in
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future generations of a selectively neutral tracer
allele that in generation P was carried only by
the focal parent. If the population sex ratio is
balanced (X = 1/2), then C = n/2N independent
of the focal parent’s sex ratio (as long as n does
not depend on x). But if X is any other value,
then some sex ratios x will give rise to larger
contributions than others. ‘The gene or genes fa-
vored are always those whose increase will shift
the population sex ratio (X ) toward 0.5.’

The paper goes on to show that the equilib-
rium progeny sex ratio is not affected if male and
female offspring, once produced, survive to adult-
hood with different probabilities; these proba-
bilities cancel out of the expressions for m/M
and f/F . Curiously, the paper does not extend
the analysis to include sexually dimorphic mor-
tality rates during the period of parental care,
or other sources of differential offspring costs,
even though Fisher considered this extension ver-
bally and noted the implication that m, M , f
and F can be interpreted more generally as net
parental expenditures on behalf of male and fe-
male offspring. Bodmer and Edwards (1960) mod-
elled Fisher’s argument by writing an expression
for the reproductive value produced by a unit of
parental expenditure, given sex-specific intrinsic
costs and probabilities of surviving the period of
parental care. This rate of return measures ‘the se-
lective advantage attached to reproduction with
particular sex and parental expenditure ratios’;
it is independent of the focal parent’s progeny
sex ratio when ‘the total parental expenditure in-
curred in respect of children of each sex is equal’,
confirming ‘Fisher’s Law’.

Because the total (population-wide) male and
female investments M and F are directly propor-
tional to the average (individual) investments, we
are free to normalize the Shaw–Mohler equation
to give an average fitness of 1, in keeping with
modern conventions in other areas of population
genetics

W = 1

2

(
f

F
+ m

M

)
, (1.10)

where F is the average value of f in the popu-
lation and M is the average value of m. A simple
analysis that explicitly incorporates differential
costs can then be carried out as follows. The con-
straint on allowable combinations of female and

male offspring can be represented by an equa-
tion that specifies the number of daughters that
a parent will produce if it also produces m sons.
For example, assume the simplest kind of linear
trade-off between male and female production,
and let each daughter cost c times as much as a
son. Then the constraint is cf + m = r , or

f = r − m

c
, (1.11)

where r is the total resource available for
offspring production (in units of the cost of a
son). Substituting the constraint (eq. 1.11) into
the fitness function (eq. 1.10) we get

W = 1

2

(
r − m

c
R − M

c

+ m

M

)
. (1.12)

Note that the relative cost of a female (c ) cancels
out, and that without any loss of generality we
are free to set the average resource (R ) equal
to 1. Thus the constrained fitness function sim-
plifies to

W = 1

2

(
r − m

1 − m
+ m

M

)
. (1.13)

What sex ratio (m) will maximize our parent’s
fitness, given that it has r units of resource?
Of course we already know what the answer is
supposed to be: parents should expend equal
amounts of resource on each sex. If that’s what
typical parents are doing, then M = 1/2, and the
fitness function further simplifies to

W = [(r − m) + (m)] = r. (1.14)

Now the parent’s sex allocation (m) also cancels
out, and its fitness is simply equal to its resource
pool. We have explicitly derived the result that
each parent is indifferent to the sexes of its own
offspring, even where male and female costs
differ, as long as there is equal overall investment
in the population at large (M = 1/2).

Of course parents are far from indifferent
when overall investment is not equal, and the
Shaw–Mohler equation quantifies the fitness
differences associated with atypical (‘mutant’)
progeny sex ratios in populations that are away
from the evolutionary equilibrium (Figure 1.1).
Not only do parents that invest equally in sons
and daughters do better than average when most
other parents are investing unequally, but par-
ents that over-compensate do even better, and
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Fig 1.1 Fitness as a function of brood sex ratio in
populations with different average sex ratios, as described by
the Shaw–Mohler equation. W(m) is the parent’s expected
genetic represention in the generation of its grandprogeny,
given that it has one unit of resource (r = 1) which it uses to
produce m male and 1 − m female offspring in a population
where the average proportional allocation to males is M (0.3,
0.5, or 0.6).

those that produce the under-represented sex ex-
clusively do best of all. As we mentioned ear-
lier, the selection coefficients associated with sex
ratio differences can be huge relative to those
believed to account for much real adaptive evo-
lution, and they can be large relative to those
needed theoretically to overpower drift even in
very small populations. For example, consider a
population out of equilibrium by only 1% (M =
0.49). Then a parent with one unit of resource
will have a fitness of

W = 1

2

(
1 − m

0.51
+ m

0.49

)
. (1.15)

A typical parent (m = 0.49) has a fitness of
1.0, while a nearly identical ‘Fisherian’ parent
(m = 0.5) has a fitness of 1.0004 (0.04% above
average) and a fully overcompensating parent
(m = 1) has W = 1.02 (2% above average). The
Fisherian (m = 1/2) parent’s advantage increases
rapidly with the size of the population’s deviation
from equilibrium, reaching 1% when the devia-
tion reaches 5% (M = 0.45 or M = 0.55).

In deriving this model we made some sim-
plifying assumptions that do not always hold

true. For example, we assumed that the popula-
tion is effectively infinite and randomly mating,
that generations are discrete and nonoverlap-
ping, that the constraint on male and female off-
spring numbers is linear (cf + m = r ) and that the
fitnesses of individual female and male offspring
are independent of brood sex ratios. With respect
both to their production and to their reproduc-
tive values, positively and negatively synergistic
interactions between sons and daughters can be
imagined and, for certain taxa, documented. The
Shaw–Mohler framework can be extended to al-
low for such nonlinearities, and two classic exam-
ples (local mate competition and hermaphroditic
plants) are considered in section 1.10. The fitness
function can be expanded to account for differ-
ences in ploidy (e.g. haplodiploidy), to account
for differences in the focal parent’s (or other care-
giver’s) relatedness to male and female offspring
(e.g. workers in social Hymenoptera), to account
for differences in situation-specific male and fe-
male fitnesses (e.g. offspring of high- and low-
ranking mothers in some ungulate and primate
species), and to account for overlapping genera-
tions (see Chapter 2).

Although straightforward in principle, these
and other extensions may greatly complicate the
analysis of the resulting model. Since both the
evolutionary and analytical objectives are to max-
imize W(m, f ) subject to constraints, techniques
from optimal control theory and other branches
of applied mathematics are sometimes used to
find the evolutionarily stable allocation strate-
gies (e.g. Macevicz & Oster 1976, Oster & Wilson
1978). Probabilistic approaches may also be nec-
essary, as in the small-population case where
stochastic fluctuations of the sex ratio will be
large and the total allocation to males and fe-
males (M , F ) will not be effectively independent
of the focal parent’s allocation (m, f ). Here par-
ents are not indifferent to their own progeny sex
ratios even when the population is at its evo-
lutionary equilibrium, as first noted by Verner
(1965).

MacArthur (1965) identified an interesting
corollary of the Shaw–Mohler formulation that
holds in many but not all models with nonover-
lapping generations: at equilibrium the product
of the numbers of females and males (N f Nm)
is maximized, even where individuals of one
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sex cost more than the other (see Maynard
Smith 1978, 1982, Charnov 1982, Karlin & Lessard
1986).

At this point it may be useful to review
the core assumptions and logic of this his-
toric neutral-gene-transmission model that still
strongly influences the way we conceive and anal-
yse selection on sex ratios. The evolutionary pay-
off associated with a given sex ratio phenotype
is assumed to be proportional to the reproduc-
tion of the parent’s offspring. Shaw and Mohler
explicitly invoke the transmission of genes, and
even refer to their paper as a discussion of
the ‘population genetics of autosomal genes af-
fecting the primary sex ratio’, although no al-
leles or gene frequencies appear anywhere in
it. (Düsing knew nothing of genes, of course,
but intuitively knew that maternal and pater-
nal contributions would be of equal evolutionary
importance.) Thus the sex ratio differences
among parents are assumed to be caused at
least in part by genetic variants that the par-
ents will transmit to their offspring. Then, as
Darwin almost argued, the offspring of parents
that over-produce the under-represented sex will
have more offspring, and their offspring will (as
he did argue, but then doubted) ‘inherit a ten-
dency to procreate fewer’ of the over-represented
sex and more of the under-represented sex, so
that ‘a tendency towards the equalization of the
sexes [will] be brought about’.

In the Shaw–Mohler formulation, this reason-
ing is embodied in an equation that expresses the
total expected reproduction by offspring of par-
ents that produce different sex ratios in a popula-
tion with a given overall sex ratio. This measure
of fitness is explicitly constructed to reflect the
transmission to distant generations of selectively
neutral genes carried by the parents. We find that
overproducing the minority sex (more generally,
the under-invested sex) always yields greater than
average fitness. We interpret fitness (defined in
this way) as a metric indicating the expected evo-
lutionary fates of alleles that incline their bearers
to produce different progeny sex ratios; such alle-
les are implicitly ones of small individual effect,
possibly occurring at many different genetic loci
scattered throughout the genome. We conclude
that a population fixed for a ‘Fisherian’ genotype

(m = M = 1/2) should not be subject to invasion
by male- or female-biasing alleles at any loci.

With the benefit of hindsight we may be
tempted to view this argument as air-tight.
After all, its conclusion is known to be correct.
But it rests on some assumptions that could
have proved troublesome. We glossed over all of
the gritty mechanistic details that connect the
phenotypes caused by particular alleles to the
transmission of those same alleles. A moment’s
thought is all it takes to see that male-biasing
alleles will tend to accumulate in males, while
female-biasing alleles will tend to accumulate in
females (Shaw 1958, Nur 1974). Thus the frequen-
cies of alleles affecting sex ratios will differ be-
tween the sexes (as discussed in the next section
and illustrated in Figure 1.3). Might this affect
the evolutionary outcome in a species where
sex ratios are determined by just one parent
(say, the mother)? The answer is not obvious,
so we need also to construct and analyse dy-
namic population-genetic models in which these
potentially critical connections are represented
explicitly.

1.9 Genetic models II: alleles that
determine parental sex ratios

We were able to develop the logic of expected-
future-fitness models along historical lines, be-
cause the history begins simply and then adds
layers of complexity. By contrast, the history
of models with alleles that specifically affect
parental sex ratios is not so straightforward. The
first models were, for the most part, relatively
complex, opaque and lacking in generality, so
they do not provide good examples with which
to introduce the subject as presently understood.
For this reason we will first describe a more
highly derived but simple and generic model, and
then look back briefly at some pioneering models
from the literature.

Genetic evolution will not occur unless the
genome includes at least one locus with two or
more different genotypes that tend to produce
different phenotypes. Often we can reasonably
assume that what’s true for one locus will be
true (qualitatively) for others, in which case the



MODELS OF SEX RATIO EVOLUTION 13

Fig 1.2 Mating types and offspring productions in a haploid
genetic model. Alleles a and A occur at frequencies qf and
1 − qf in females and qm and 1 − qm in males. Male and female
parents mate at random, so the four mating types occur in the
proportions indicated above the pedigrees. Diploid zygotes
form briefly and then undergo meiosis to form haploid spores
that develop into the next generation of adults. Brood sex
ratios are determined by the mother’s genotype (m for
mothers of genotype a, and m∗ for mothers of genotype A).

problem can be represented adequately by just
one locus with two alleles. Often it is also reason-
able to let the species be haploid, so as to reduce
the number of distinct genotypes to an ab-
solute minimum. If we assume, in addition,
that progeny sex ratios are determined by the
mother’s phenotype, and that parents mate ran-
domly with respect to their sex ratio genotypes,
then we have defined the very simple model that
is shown in Figure 1.2 and summarized alge-
braically in Table 1.1. Each row in the table repre-
sents one of the four mating types illustrated in
the figure. Alleles a and A act in the mother to de-
termine her expected progeny sex ratio, m or m∗,
respectively. The frequency of a is q f in females
and qm in males. The entries under ‘daughters’
and ‘sons’ are the expected proportions of each
progeny resulting from matings of a given type
(row) that will be females or males of genotypes
a or A (columns).

Table 1.1 Frequencies and outputs of the four mating types in a haploid model

Daughters Sons

Mating Frequency a A a A

a × a qfqm (1 − m) m
a × A qf(1 − qm) 1/2(1 − m) 1/2(1 − m) 1/2m 1/2m
A × a (1 − qf)qm

1/2(1 − m∗) 1/2(1 − m∗) 1/2m∗ 1/2m∗

A × A (1 − qf)(1 − qm) (1 − m∗) m∗

The state variables in this model are the geno-
type frequencies q f and qm. We want to know
whether these gene frequencies will change and,
if so, in which direction. To do this we need to
write equations for q ′

f and q ′
m (the allele frequen-

cies next generation) as functions of q f and qm

(the allele frequencies this generation). This may
sound difficult, but in fact it is easy given the
preliminary calculations we have already placed
in the table.

By definition, q ′
f is the proportion of all daugh-

ters that will be of genotype a. The total produc-
tion of daughters is q f (1 − m) + (1 − q f )(1 − m∗).
This expression goes in the denominator. For the
numerator we need the total production of
daughters of genotype a. This can be read di-
rectly from the table, as the sum of the products
formed by multiplying each term in the ‘fre-
quency’ column by the term in the ‘daughters/a’
column of the same row. Thus the recurrence equa-
tion for the female genotype frequency is

q ′
f =
qf qm(1−m)+ 1

2 qf (1−qm)(1−m)+ 1
2 (1−qf)qm(1−m∗)

qf (1−m)+ (1−qf )(1−m∗)
.

(1.16)

To make the origin and meaning of each term
as easy to see as possible, we have written the
equation without any further algebraic simplifi-
cations. By a similar train of reasoning, we obtain
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Fig 1.3 Allele frequency and population sex ratio
trajectories for the two-allele haploid model. Mothers of
genotype a produce broods with 20% males (m = 0.2)
regardless of their mate’s genotype, and mothers of genotype
A produce 60% males (m∗ = 0.6). The population illustrated
in the panels on the left begins from an allele frequency of
q = 0.99, and the population on the right begins from
q = 0.01.

the corresponding recurrence equation for the
male allele frequency

q ′
m = qf qm(m) + 1

2 qf (1 − qm)(m) + 1
2 (1 − qf )qm(m∗)

qf (m) + (1 − qf )(m∗)
.

(1.17)

Everything on both right-hand sides is known,
so by evaluating this pair of equations we ob-
tain the genotype frequencies for the next gener-
ation; these can then be used to obtain the geno-
type frequencies for the generation after that,
and so on for as long as we care to iterate this
dynamical system. Doing so by hand would be
tedious, but it is easy by computer. Figure 1.3
illustrates two such calculations. Given alleles
with phenotypic values flanking 1/2 (in this case,
m = 0.2 and m∗ = 0.6), the system always con-
verges to genotype frequencies that give M = 1/2

(in this case, q f = 0.25). Males have a much lower
frequency of the female-biasing allele a (qm = 0.1

at equilibrium) because a disproportionate num-
ber of their mothers carry the male-biasing al-
lele A. Despite this complication, our conclusion
from the expected-future-fitness approach is sup-
ported, at least for this genetic system.

Any population-genetic model that can be
written down in this way (as a set of recurrence
equations) can be studied by iteration in the
manner illustrated in Figure 1.3. For example,
Shaw (1958) did this for a diploid model (with-
out the benefit of a computer!), and Hartl and
Brown (1970) did so for a haplodiploid model.
But each set of parameters and initial conditions
considered in this way is just an anecdote. Even
in the present very simple model, there are in-
finitely many combinations of m and m∗. Since
not all of them can be considered, how are
we to be confident of any general conclusions
we might want to draw about the model’s be-
haviour throughout certain regions of its para-
meter space?

Fortunately, we can often obtain rigorous
general results by restricting our attention to
the dynamics of invasion and fixation. We consider
the system’s behaviour at the ‘boundary’ of the
state space, where one allele (A) is nearly fixed
and the other (a) is vanishingly rare. Here the
system can be represented as a set of linear
equations far simpler than the full system. In
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matrix form, the system can be written q′ = Mq
where q′ and q are vectors of the (infinitesimal)
genotype frequencies (here, q f and qm) and M is
a matrix of coefficients representing the system’s
dynamics in the immediate neighbourhood of
the boundary. The elements of M are partial
derivatives of the full recurrence equations
evaluated at q = 0, where allele a is imagined
to have just entered the population as a very
rare migrant or a new mutation. As long as a re-
mains very rare, the linearized system accurately
represents the behaviour of the full system.
Standard techniques of linear algebra allow us
to determine under what conditions a small
‘disturbance’ of the equilibrium (i.e. tiny positive
allele frequencies) will grow. Typically this is all
we really care about because we need only show
that an allele with a certain value of m∗ will
not be invaded by any allele with an m different
from m∗. This is usually a straightforward task.

In the present case, as in many, the matrix M
takes a simple and illuminating form. Here we
write it out explicitly, with its associated vectors
q′ and q, and the result of the multiplication, so
as to make the meanings of all the terms easy to
grasp.


 q ′

f

q ′
m


 =




1

2

1 − m

1 − m∗
1

2

1

2

m

m∗
1

2





 qf

qm




=




1

2

1 − m

1 − m∗ qf + 1

2
qm

1

2

m

1 − m∗ qf + 1

2
qm


 (1.18)

Note that the phenotypic values (m, m∗) of the
genotypes (a, A) appear only in the first column
of the matrix, while nothing but a simple con-
stant (1/2) appears in the second column. The co-
efficients in the first column are multiplied by q f ,
the frequency of the mutant genotype in females.
When m is smaller than m∗, the upper left-hand
coefficient is greater than one-half and the lower
left-hand coefficient is less than one-half. As a
consequence, increases in q f will tend to cause
larger increases of q ′

f than of q ′
m and the rela-

tively female-biasing mutant allele a will tend to
concentrate itself in females. The opposite hap-

pens when m is larger than m∗. Males transmit
their genotypes without bias (passively) to daugh-
ters and sons, because males do not influence the
sexes of their offspring.

The vector q (which is near zero) will tend
to grow when the largest eigenvalue of M is
greater than 1, and it will shrink towards zero
when the eigenvalue is less than 1. (The eigenval-
ues � are solutions of the characteristic equation
det(M − �I) = 0, where I is the identity matrix.)
The overall magnitude of q will not change when
the largest eigenvalue is exactly 1, and this will
obviously be the case at least whenever m = m∗,
even if m∗ is far from its evolutionary equilib-
rium. (When m = m∗, all four elements of M are
1/2 exactly.) The eigenvalue is easy to calculate,
but it takes a rather messy and unrevealing form
involving nonintegral powers of m and m∗. How-
ever, since we are really most interested to know
what conditions other than m = m∗ will give an
eigenvalue of 1, we can greatly simplify the prob-
lem by setting � = 1 and expanding the resulting
characteristic equation det(M − I) = 0 which usu-
ally takes an understandable and revealing form.
In the present case we get

1

2
− 1

4

1 − m

1 − m∗ − 1

4

m

m∗ = 0, (1.19)

which easily rearranges to give

1 = 1

2

[
1 − m

1 − m∗ + m

m∗

]
. (1.20)

This should look familiar: it is the Shaw–Mohler
equation with the parent’s fitness (the left-hand
side) set equal to 1. This equality will hold, for
arbitrary values of m, if and only if m∗ = 1/2, con-
sistent with our previous analysis.

It may seem that we have worked through
a great deal of ‘intricate’ genetics and mathe-
matics (as Darwin predicted), only to return to a
place very close to the one he reached 130 years
ago without the benefit of genes or calculations.
In fact, the theory has been greatly augmented
and strengthened. We understand that the equi-
librium entails equal net investment in the sexes,
which will not mean equal numbers if female
offspring cost more or less than males. We un-
derstand the basic principle much more deeply,
having seen it implemented in two different
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genetic frameworks, and this gives us both the
understanding and the confidence to construct
complex and sophisticated tracer-gene models
(e.g. Frank 1998). In short, we now have tools
with which to attack a nearly unlimited range
of problems that could not be solved securely (or
in some cases, at all) without formal methods
such as these. The next section considers how
such methods have been used to extend the cen-
tral principle to situations not encompassed by
the original model.

1.10 Themes and variations

In nature, the biological circumstances surround-
ing sex allocation are as variable as the ecologies
and life histories of real organisms. This variation
motivates a seemingly endless diversity of sex ra-
tio models. Does this diversity of models under-
mine the supposed generality of sex ratio theory?
Not really, because the variations play on just a
few underlying themes, if often in combinations
with each other.

1. Differential costs of the sexes. This theme was
clearly identified by Fisher. It arises from differ-
ential rates of mortality during the period of
parental care, from differential resource needs
of male and female offspring (reflected for ex-
ample in different sizes at weaning), and from
other ways in which male and female offspring
may differentially affect a parent’s future repro-
duction (for example, by compromising the par-
ent’s future growth, or by exposing the parent to
increased risks of mortality).
2. Condition-dependent benefits and reproductive val-
ues of the sexes. Both the constraints and the ge-
netic payoffs associated with different progeny
sex ratios may change with a variety of envi-
ronmental factors including seasonality, resource
availability, parental size (competitive ability,
fecundity) and aspects of local population struc-
ture. In some social species, for example, mem-
bers of the less-dispersing sex may help their par-
ents to defend a territory or to feed subsequent
offspring, thereby providing direct reproductive
benefits that partially offset the costs of their
own production. Alternatively, under certain

circumstances the members of one sex may be
more likely to reproduce or to benefit from in-
creased parental investment than the other (as
first argued by Trivers & Willard 1973). Finally,
the offspring of one sex may be more likely to
compete with each other for the same matings,
in which case they are partially reproductively
redundant from the parent’s point of view (local
mate competition, section 1.10.1). Some of these
effects can be subtle, giving rise to selection pres-
sures far weaker than those associated with the
population’s mean allocation ratio.
3. Mode of inheritance and locus of control. Genes
with unusual patterns of inheritance, such as
those on Y chromosomes and mitochondrial
chromosomes, sometimes have different ESS sex
ratios than do those on autosomes, giving rise
to evolutionary ‘conflicts’ over the sex ratio
(Hamilton 1967). In haplodiploid species where
males transmit their genes only to daughters,
mates ‘disagree’ profoundly as to what their
progeny sex ratio should be (e.g. Brockmann &
Grafen 1989), and in some social Hymenoptera,
workers and queens disagree as to what sex ra-
tio their colony should produce (section 1.10.2).
In principle, embryonic offspring may disagree
with their parents over what sex they themselves
should become; for example, if one sex is more
costly and therefore produced in smaller num-
bers, all offspring, given the choice, would prefer
to be of that sex.

We now briefly describe three classic
extensions of the basic Darwin–Fisher model to
show how it has been adapted to such special
circumstances.

1.10.1 Local mate competition
The current ‘Golden Age’ of sex ratio research
could be said to have begun with W.D. Hamilton’s
(1967) paper ‘Extraordinary sex ratios’. Hamilton
reviews Fisher’s argument and then relaxes two
of Fisher’s implicit assumptions. The paper’s first
section relaxes the assumption that sex alloca-
tion is controlled by autosomal genes (sex-linked
meiotic drive, an instance of theme 3, above). The
second section relaxes the assumption of random
mating in a large population and considers ‘Local
mate competition’ or LMC (theme 2). Hamilton
considers species such as fig wasps, where mating
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takes place in small aggregations representing
the offspring of just a few females, followed by
dispersal of the mated females. Under this pop-
ulation structure, brothers compete relatively di-
rectly with each other for matings, but sisters do
not compete directly for the resources on which
their own reproductive success depends. This
asymmetry requires a modified fitness function.

Under the LMC scenario, a mother’s fitness
rises linearly with the number of dispersing fe-
males she produces, as in the Darwin–Fisher
model, but not with the number of sons. Because
her sons tend to compete with each other, each
additional son yields a smaller increase in the total
number of inseminations achieved by all her sons to-
gether, which is the other source of her fitness.
In other words, male production obeys a law of
diminishing reproductive returns that does not
apply to daughters. Hamilton writes expected-
future-fitness expressions for females producing
sex ratios xA and xB in a population where each
mating aggregation contains the offspring of n
randomly chosen females, and he finds that the
‘unbeatable’ (ESS) sex ratio is

x∗ = n − 1

2n
. (1.21)

In an aggregation containing the offspring of
two unrelated mothers, the ESS allocation is
extremely unequal: 25% effort to sons, 75% to
daughters. However, as n increases beyond just
a few mothers contributing offspring to each ag-
gregation, brothers compete less directly with
each other (so they are less redundant from their
mother’s point of view), and the optimal male
investment rises toward 50%. In an aggregation
founded by just one female, the theoretical opti-
mum sex ratio is 0% males, which is interpreted
as ‘[no] more males than are necessary to ensure
the fertilization of all her daughters’. Hamilton
reviews sex ratio data from wasps, beetles, mites
and thrips that mate in small aggregations and
that have haplodiploid genetic systems permit-
ting females to freely control their progeny sex
ratios. Broods are strongly female-biased in al-
most every case but tend to include at least one
male.

To test the model’s logic, Hamilton con-
structs an explicit dynamical haplodiploid ge-

netic model and iterates it on the computer for
the case n = 2. Surprisingly, the unbeatable sex
ratio turns out to be approximately 0.21 rather
than 0.25 as predicted by the general analytical
model. This discrepancy was later confirmed to
be a real difference between the ESSs for diploid
(biparental) and haplodiploid (arrhenotokous) ge-
netic systems, through the analysis of more so-
phisticated expected-future-fitness models and
explicit genetic models (Hamilton 1979, Taylor
& Bulmer 1980, Uyenoyama & Bengtsson 1982,
Frank 1985, Herre 1985, Taylor 1988, Stubblefield
& Seger 1990). The exact ESS for haplodiplody is

m∗ = (n − 1)(2n − 1)

n(4n − 1)
. (1.22)

The downward deviation of m∗ (for a given n),
relative to Hamilton’s original solution, is a con-
sequence of arrhenotoky (males developing from
unfertilized eggs), not haplodiploidy per se. The
same ESS (eq. 1.22) holds for hypothetical haplo-
haploid and diplodiploid genetic systems un-
der which, as in ordinary haplodiploidy, females
arise from biparentally produced zygotes while
males arise from unfertilized eggs (Stubblefield
& Seger 1990). Under arrhenotoky, but not un-
der biparental genetic systems (regardless of the
ploidys of males and females), inbreeding has
unequal effects on genetic transmission through
the two sexes, and this leads to the difference
between eqs. 1.21 and 1.22.

Under the assumptions of the original
Darwin–Fisher model, equal investment in the
sexes is a ‘weak-form’ ESS, not an optimum: if the
population as a whole invests equally, then all in-
dividual allocations (from 100% sons through to
100% daughters) are equally fit. But under LMC,
the ESS is ‘strong-form’ (Uyenoyama & Bengts-
son 1982): even if the population is at equilib-
rium, individuals suffer reduced fitness if their
own progeny sex allocations depart from the ESS,
because fitness is determined by the sex ratios
within local aggregations.

During the last two decades of the twentieth
century, local mate competition became a cen-
trepiece of sex ratio research both through ex-
perimental studies of several species of parasitoid
wasps and through field studies of entire commu-
nities of fig wasps (Chapters 6, 10, 19 and 20). An
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important theoretical and empirical issue run-
ning through much of this work concerns sex
ratio adjustments made by individual mothers
in response to information about the numbers
and fecundities of other females likely to have
contributed offspring to the same mating aggre-
gation. What cues might females use to gather
information about other females contributing to
their aggregation? What responses should they
try to make? How accurate might their responses
be? Both theoretically and empirically, the an-
swers depend in interesting ways on a variety
of biological details. Given his interest in sex ra-
tio variation among families, Karl Düsing clearly
would have enjoyed the current state of LMC
research.

1.10.2 Sex ratio conflict in ants
The theory of inclusive fitness (Hamilton 1964)
was conceived with social insects in mind, and
in his 1972 paper Hamilton considers them at
length. Focusing on the Hymenoptera, he points
out that haplodiploidy gives rise to a peculiar pat-
tern of relatedness among family members. Ow-
ing to their father’s haploidy, outbred full sisters
are related by r = 3/4, but a mother is related to
offspring of both sexes by the usual r = 1/2. (Co-
efficients of relatedness are reviewed by Bulmer
1994.) Thus a female would transmit more of her
genes to future generations by rearing a sister
than by rearing a daughter. Hamilton proposes
that as a consequence, a hymenopteran female
will ‘easily [evolve] an inclination to work in the
maternal nest rather than start her own.’ How-
ever, a female is related to her brothers by only
half the usual amount (r = 1/4), so she is not more
related to her mother’s offspring as a whole than
to her own, unless ‘the sex ratio or some abil-
ity to discriminate allows the worker to work
mainly in rearing sisters.’ Hamilton suggests that
inbreeding might lead to female-biased sex ra-
tios and thereby to eusociality, but a female’s
average r to her siblings remains the same as
her average r to offspring under inbreeding, if
mothers control their own sex ratios (Trivers &
Hare 1976), so inbreeding does not of itself favour
the evolution of eusocial workers. Trivers and
Hare (1976) argue that Hamilton’s suggestion will
work only if daughters actively promote their

own reproductive interests at the expense of their
mother’s.

The asymmetrical degrees of relatedness in
haplodiploid species predispose daughters to the
evolution of eusocial behavior, provided that they
are able to capitalize on the asymmetries, either
by producing more females than the queen
would prefer, or by gaining partial or complete
control of the genetics of male production.

(p. 250)

Trivers and Hare then outline several different
steps that workers could take to ‘capitalize’ on
their closer relationships to sisters, sons and
nephews than to daughters and brothers. The
most important for our purposes (and the most
famous) is ‘Skewing the colony’s investment to-
ward reproductive females and away from males.’

In a colony with just one queen who is singly
mated, and who lays all the reproductive eggs,
females will be three times as related to their
sisters as to their brothers (3/4:1/4). If the ratio
of investment were 1:1 over the population as
a whole, then workers would gain three times as
much fitness from rearing sisters as from rearing
brothers and might therefore benefit from bias-
ing their investment towards sisters, as pointed
out by Hamilton. Trivers and Hare argue: (1) that
there is little to stop the workers from doing this,
counter to their mother’s interests, since they do
all the work, and (2) that at the resulting evolu-
tionary equilibrium

we expect three times as much to be invested in
females as in males, for at this ratio of
investment [3:1] the expected [reproductive
success] of a male is three times that of a female,
per unit investment, exactly canceling out the
workers’ greater relatedness to their sisters. Were
the mother to control the ratio of investment, it
would equilibrate at 1:1, so that in eusocial
species in which all reproductives are produced
by the queen but reared by their sisters, strong
mother-daughter conflict is expected regarding
the ratio of investment, and a measurement of
the ratio of investment is a measure of the
relative power of the two parties.

The paper presents an extensive analysis of data
on investment ratios in ants, bees and wasps with
different kinds of social structures, and these are
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broadly in agreement with the sex ratio argu-
ments. In particular, an average allocation ratio
of roughly 3:1 is found for 20 species of monog-
ynous ants, in agreement with the model on the
assumptions: (1) that the queens in most of these
species are singly mated, (2) that the relative dry
weights of males and females indicate their rel-
ative costs to the colony, and (3) that workers
tend to control the sex ratio. In 1976 there was
very little evidence about the mating frequencies
of queen ants. Subsequent work has shown that
mate numbers can vary within as well as between
species, and has exploited this fact to produce
some very clean and elegant tests of the model
(see below). Subsequent work also has shown that
the dry weights of females may tend to over-
represent their costs relative to males, such that
the average allocation ratio of Trivers and Hare’s
20 monogynous ants may actually be closer to 2:1
than 3:1 (see Boomsma 1989, Bourke & Franks
1995, Crozier & Pamilo 1996), as might be ex-
pected if multiple mating is common in some
of these species. Trivers and Hare estimate allo-
cation ratios for a number of polygynous ants
(those with several to many queens per colony)
and ‘slave makers’ (in which the queen’s offspring
are reared by workers of another species); as pre-
dicted, the apparent allocation ratios of these
species are less female biased than those of the
monogynous species, on average.

Having introduced the concept of an irre-
ducible conflict over the sex ratio, Trivers and
Hare go on to dissect it in some detail. For ex-
ample, if the queen lays only a fraction (p) of
the male eggs, with unmated workers laying the
remainder (1 − p), then the equilibrium ratio of
investment (F/M) for workers is

3(3 + p)

(3 − p)2
. (1.23)

This declines from 3:1 when the queen lays all
the male eggs (p = 1) to 1:1 when workers lay
all the male eggs (p = 0). From the queen’s point
of view, the corresponding ESS is

(3 + p)

(3 − p)(1 + p)
, (1.24)

which is 1:1 at both endpoints and slightly lower
in the middle. The conflict over the sex ratio disap-

pears when workers produce all the males, but it
is replaced by a conflict over male production, since
the queen’s inclusive fitness is reduced by worker
laying.

Like other models in the paper, this one is
derived within an expected-future-fitness frame-
work that takes Fisher’s principle as an axiom
and that extends it, using Hamilton’s inclusive-
fitness theory, to account for unequal coefficients
of relatedness and indirect parentage. By 1976
this framework seemed so obvious and secure
to the authors that they could present expres-
sions such as (1.23) and (1.24) without derivation
and with little or no comment. Other theorists,
not so readily persuaded by the logic of Trivers
and Hare’s novel and intricate arguments, soon
started testing these arguments by analysing
explicit genetic models (e.g. Oster et al. 1977,
Benford 1978, Charnov 1978, Oster & Wilson
1978, Craig 1980, Taylor 1981, Pamilo 1982,
Bulmer 1983). Trivers and Hare’s central conclu-
sions were all upheld, although a number of pre-
viously unsuspected complications were uncov-
ered by these models; for example, the way in
which workers with different sex-allocation phe-
notypes interact behaviourally to determine the
colony’s sex ratio can affect the nature of the ESS
(Charnov 1978, Craig 1980, Pamilo 1982, Bulmer
1983).

Social insect colonies differ in many relevant
ways among and even within species. For exam-
ple, as mentioned above they may have little or
no worker production of males; they may have
one or several queens (or no queen); and the
queen or queens may mate with one or several
males. Models incorporating each of these con-
tingencies have been analysed. Variation in the
queen’s mate number within species is especially
interesting because it affects the workers’ but not
the queen’s equilibrium sex allocation, with po-
tentially dramatic effects on the outcome of the
worker–queen conflict (Boomsma & Grafen 1990,
1991).

Consider a species where there is always
one queen but she may have mated with one
or two males, and suppose that colonies with
once- and twice-mated queens are equally fre-
quent and equally productive. Workers in the
once-mated colonies would be indifferent to their
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colony’s allocation ratio if the population-wide ra-
tio were 3:1, as in the simplest model considered
above. But workers in the twice-mated colonies
would be indifferent if the population ratio were
2:1. (Their average relatedness to sisters is r =
1/2(3/4 + 1/4) = 1/2.) Thus both colony types cannot
be indifferent simultaneously. If the population-
wide allocation ratio is more female-biased than
2:1, then workers in twice-mated colonies would
do best to produce males (brothers) exclusively,
because males would be the under-represented
sex from their point of view. Similarly, if the
population-wide ratio is less female-biased than
3:1, then workers in once-mated colonies should
produce females (sisters) exclusively.

Suppose that workers can assess the queen’s
mate number (for example, by perceiving the
genetic diversity of their sisters). Then, given
our assumptions that the two colony types are
about equally frequent and that workers can ‘as-
sume’ a roughly equal mixture of colony types,
the evolutionarily stable outcome should be a
polymorphism among colonies, with the singly
mated colonies specializing in exclusive female
production and the twice-mated colonies produc-
ing (at least on average) a 1:2 male bias such that
the combined population-wide investment ratio
is 2:1. These divergent allocations by colonies
with different patterns of relatedness asymme-
try give rise to a ‘split sex ratio’ distribution over
colonies. Neither type of colony can improve its
fitness by making a different sex ratio, and nei-
ther actually produces its own ESS, although in
our example the population average is the ESS
for twice-mated colonies.

Colony sex ratios are distributed bimodally
in many ant species, and some recent genetic
studies of mate numbers in such species are
qualitatively consistent with the predictions of
this split sex ratio model. Colonies with once-
mated queens tend to produce sex ratios that
are more strongly female-biased than those of
colonies with twice-mated queens (Sundström
1994, Sundström et al. 1996). These findings sup-
port the idea that sex ratio ‘imbalances’ (from
any actor’s point of view) create significant op-
portunities to increase fitness by making adjust-
ments that exploit the imbalance, and they sug-
gest that worker ants can in fact assess levels
of relatedness within their own colonies. Other

sources of among-colony variation in related-
ness asymmetry, with expected or observed ef-
fects on among-colony sex ratio variation, have
been considered by Trivers and Hare (1976), Ward
(1983), Yanega (1989), Boomsma (1991), Mueller
(1991), Chan and Bourke (1994), Evans (1995) and
others.

1.10.3 Hermaphrodites
Most plants are simultaneous hermaphrodites
(Chapter 16), as are some animals. In such
species, sex allocation is a matter of relative ef-
fort devoted to male and female functions (for
example, to pollen and seed production). Given
a linear trade-off between male and female func-
tions, the ESS in an outbreeding population is to
invest equally in each kind of function (Maynard
Smith 1971). Empirically, relative investment in
male and female functions is more difficult to
estimate than the numbers of male and female
offspring in a dioecious species, and there are
additional reasons why hermaphroditism tends
to strike us as complicated, even messy. But the
hermaphroditic model is actually much easier
to solve than the Darwin–Fisher model, because
the fitness differences associated with different
relative male investments appear sooner (in the
first, offspring generation) rather than later (in
the second, grandoffspring generation). Perhaps,
if human beings were outbreeding simultaneous
hermaphrodites, sex ratio evolution would not
have baffled Darwin to the extent that it did.

Why are some species hermaphroditic rather
than dioecious? Various reasons have been sug-
gested, and most are plausible. For example,
some hermaphrodites self-fertilize, and this per-
mits colonization of unoccupied habitats by
single immature individuals (e.g. seeds). Self-
fertilization also shifts the ESS sex allocation
strongly toward investment in female functions,
through a principle closely related to that of local
mate competition. By economizing on male func-
tion, individuals can increase their genetic con-
tributions to future generations; in effect, they
escape part of the ‘cost of sex’ (e.g. Maynard
Smith 1978).

However, many plants are self-incompatible
(outcrossing) simultaneous hermaphrodites.
They pay the full cost of sex, and they need
unrelated mates. What are the benefits in this
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case? One popular and well supported idea
is that owing to their immobility and their
reliance on animal vectors for pollination and/or
seed dispersal, many plants may experience
diminishing returns on investment in one or
both sex functions. In addition, the temporal
separation of male and female functions may
reduce the degree to which those functions draw
from the same pool of resources. Under such
conditions, an individual may be able to achieve
greater net reproduction by being partly male
and partly female than it could by devoting all
of its resources to just one sex function. In other
words, the constraint on possible combinations of
male and female reproduction may be nonlinear
in a way that makes hermaphroditism more
efficient than dioecy.

This idea is often modelled by representing
an individual’s realized or effective male and
female reproductive outputs as arbitrary powers
of its internal resource allocations: m = xa and
f = (1 − x)b . The exponent a controls the shape
of the function that scales reproductive returns
on investment in male function, and the expo-
nent b scales returns on female investment. If a
or b is less than 1, then the corresponding sex
function shows diminishing returns to scale, but
if a or b is greater than 1, then the corresponding
function shows increasing returns to scale. For
example, suppose a = 0.25 because pollinators
are easily saturated, but b = 1 because fruits and
their seeds will be eaten by birds in direct pro-
portion to their abundance and then dispersed
widely. The fitness set representing possible com-
binations of realized male and female outputs
(m and f , corresponding to values of x between
0 and 1) bends outward with respect to the ori-
gin, as shown in Figure 1.4. This graph makes it
easy to see that hermaphrodites (individuals with
some degree of mixed sex expression) will tend to
have larger total reproductive outputs than pure
males or pure females, because m + f is clearly
greater for intermediate points on the fitness set
than it is for points at the ends where m or f is
zero. But where exactly is the ESS? The unbeat-
able allocation is not obvious, because the fitness
set is not symmetrical.

We can find the ESS by writing a Shaw–Mohler
equation for the fitness of a focal individual that
allocates x to male function in a population

Fig 1.4 Fitness set for a simple model of hermaphroditic
sex allocation. The heavy curve shows possible combinations
of male (m) and female ( f ) reproductive outputs for a plant
whose male gain exponent (a = 0.25) provides diminishing
returns on investment in male function, while its female gain
exponent (b = 1) provides linear returns. The equilibrium
resource allocation (X∗ = 0.2) is highly female biased, as is
the realized output of male and female reproductive functions
(m∗ = 0.67, f ∗ = 0.80), indicated by the filled circle. The
light curves are hyperbolas representing constant values of
the product mf. They can be viewed as a contour map, and
they demonstrate that MacArthur’s (1965) principle applies to
this model; the evolutionarily stable strategy (ESS) coincides
with the highest value of mf attainable on the fitness set.

where the average allocation is X

W = 1

2

[
xa

X a
+ (1 − x)b

(1 − X )b

]
. (1.25)

When the population-wide average allocation X
is at the evolutionary equilibrium, our focal in-
dividual should be unable to increase its fitness
W by choosing an allocation x that differs from
X . In other words, W(x) should be maximized
when x = X . To find this unbeatable allocation
we differentiate the Shaw–Mohler equation with
respect to x, set the derivative equal to zero, set
x = X , and then solve for X . Doing so gives the
solution

X ∗ = a

a + b
. (1.26)

On substituting the exponents discussed above
(a = 0.25, b = 1) into this general solution we
get X ∗ = 0.20, which is highly female-biased
with respect to resources invested and substan-
tially biased even with respect to the resulting
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reproductive outputs (m∗ = 0.67, f ∗ = 0.80)
(Figure 1.4). The hermaphrodite’s fitness (W = 1)
is substantially greater than that achieved by a
male (x = 1, W = 0.75) or a female (x = 0, W =
0.63), so hermaphroditism is clearly stable
against invasion by the pure sexes (Charnov et al.
1976).

If the scaling exponents a and b both ex-
ceed 1, then the fitness set bends inward towards
the origin and dioecy (with equal numbers of
males and females) is evolutionarily stable. If
one exponent is less than 1 and the other is
greater than 1, then either androdioecy (males
and hermaphrodites) or gynodioecy (females and
hermaphrodites) may be stable, depending on the
exact values of a and b (Charnov et al. 1976).
This simple model has been extended in many
ways to reflect potentially important aspects of
plant physiology, development and ecology. For
example, models have been studied that incor-
porate vegetative growth between bouts of re-
production, with trade-offs between investment
in growth (for future reproduction) and invest-
ment in reproduction (for current fitness); in
some such models the regions of parameter space
supporting gynodioecy and dioecy expand while
those supporting androdioecy shrink, in ways
that may help to explain why androdioecy is very
rare in nature (Seger & Eckhart 1996, Eckhart
& Seger 1999). Plant sex-allocation strategies are
further complicated by several other features of
plant biologies including strong spatial popu-
lation structures, mating systems that involve
mixed selfing and outcrossing, and cytoplasmi-
cally determined ‘male sterility’ (femaleness),
which gives rise to an evolutionarily unstable but
widespread form of gynodioecy.

In 1941, the botanist D. Lewis published an
explicit population-genetic model for the rela-
tive frequencies and fecundities of females and
hermaphrodites in populations where male-
sterile individuals (females) are determined by
genotypes at a nuclear locus. He discovered
that females cannot invade an outbreeding
hermaphroditic population unless they set at
least twice as many seeds as a typical herm-
aphrodite, that the equilibrium frequency of fe-
males will approach one-half as hermaphrodites
increase their male function and decrease their
female function (thereby becoming male-like)

and that none of this is affected by the domi-
nance or recessiveness of the alleles that convert
hermaphrodites to females. Lewis does not cite
Darwin, Düsing, Fisher or any other previous sex
ratio theorist, and he does not seem to realize
that his model illuminates general issues in sex
allocation and represents a major methodologi-
cal advance. The paper seems not to have been
noticed by subsequent sex ratio theorists until
much later, after explicit genetic models had
been reinvented.

1.11 Conclusion: diversity in unity

Sex ratios evolve according to simple, aestheti-
cally beautiful principles, but they often affect
and respond to many particular and even id-
iosyncratic aspects of a species’ biology. Sex ra-
tio theory therefore establishes concrete links be-
tween some of the most specific and some of
the most general phenomena in biology, and it
does so in a rich and productive way. The theory
also accommodates a wide variety of styles and
techniques of analysis that continue to grow in
sophistication and rigour. Yet despite the field’s
ever-growing diversity in these respects, its theo-
retical structure is becoming simpler and more
transparent. The field as a whole is much larger
than it once was because more is known, and
in more detail. But the central ideas and prin-
ciples seem more coherent, more clearly articu-
lated, and therefore easier to master than they
were a few decades ago. As we stressed at the
outset, there is still a great deal to be done, both
empirically and theoretically, and no one can pre-
dict what will turn up next. Sex touches almost
everything, so the study of its allocation will lead
us to many new problems, and a large fraction
of these seem certain to be interdisciplinary.

For example, as genetics becomes increasingly
genomic in scale, we are encouraged to think
in increasingly concrete terms about the pos-
sibilities for intragenomic conflict over sex ra-
tios. When Hamilton introduced this subject in
the first half of his 1967 paper, it was little
more than an abstract possibility supported by
a few observations of sex-chromosome meiotic
drive. Now, only 35 years later, we know the ex-
act chromosomal locations of all the genes in
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several species’ genomes, and soon we will know
when and where these genes are expressed and at
least something about the physiological proper-
ties of their products. There are many situations
in which sex-linked and autosomal genes might
‘disagree’ about their carrier’s parental invest-
ments or other sex-biased interactions with kin.
How are these conflicts ‘settled’? Our growing
ability to observe both the expression and the
evolution of arbitrarily large sets of genes should
bring new life to both the theoretical and empir-
ical aspects of this very interesting problem.

On the theoretical side, expected-future-
fitness and population-genetic models will again
play complementary roles. Obviously, with spe-
cific genes in mind, it will be natural and nec-
essary to construct explicit multi-locus dynam-
ical models that show how the interactions of
alleles with various different phenotypic effects
might lead to various alternative outcomes. Per-
haps less obviously, it will also be necessary to
ask how neutral alleles at typical loci, elsewhere
in the genome, might be affected by the pos-
sible outcomes of the conflict. If different out-
comes are better and worse for large numbers of
genes throughout the genome, then such genes
might be recruited into the conflict as modifiers
of small effect. Because fitness-based models de-
scribe how particular sex-allocation phenotypes
affect the future frequencies of neutral genes as-
sociated with those phenotypes, such models will
be used to study how the genetic background at
large might be expected to respond to particular
genetic conflicts.
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